Review of the Pharmacodynamic Principles that Determine the Dosing and Monitoring of Aminoglycosides

Memorial Health Care System Megan Whittier 11 August 2014

Objectives

- 1. Identify the indications for aminoglycoside therapy.
- 2. Differentiate pharmacokinetic/pharmacodynamic differences among aminoglycosides.
- 3. Discuss dosing strategies based on pharmacodynamic principles.
- 4. Discuss monitoring parameters and the use of dosing nomograms.
- 5. Identify the possible toxicities of aminoglycosides.

FDA Approved Aminoglycosides¹

- Amikacin
- Gentamicin
- Tobramycin
- Streptomycin
- Neomycin
- Paromomycin

Mechanism of Action

- Bind to 16S ribosomal RNA of the 30S ribosomal subunit
 - Prevents elongation

When do we use Aminoglycosides?²

- Empiric treatment of gram negative sepsis
- Pseudomonal infections
- Synergy with cell wall active agents in gram positive infections
 - Eg: endocarditis
- Activity?³
 - Amikacin has the broadest activity
 - Tobramycin has greater susceptibility to pseudomonas than gentamicin

Aminoglycoside Kinetics²

		Elimination Half-life	
Agent	Volume of Distribution	Normal	CrCl < 10 ml/min
Amikacin	0.3	2.5-3	30
Gentamicin	0.22-0.3	2.5-3	30-50
Tobramycin	0.33	2.5-3	56
Streptomycin		2.5	100

- •Where do AMGs distribute?
 - •Good body fluids (synovial, peritoneal, ascitic, pleural)
 - •Poor CNS and vitreous
 - •Slowly bile, feces, prostate, amniotic fluid
- •Protein binding of almost all AMGs < 10%

Abnormal Situations²

- In what situations would you have a higher V_d and lower peak levels?
 - Sepsis
 - Fever includes febrile neutropenia
 - Severe burns
 - Congestive cardiac failure
 - Peritonitis
 - Immediate postpartum period
 - Parenteral nutrition

AMG Clearance²

- Renal utilizing glomerular filtration
 - Decreased in poor renal function
 - As a result also decreased in the elderly and neonatal populations
- In patients with ESRD what type of clearance is most utilized?
 - Non-renal clearance
- Can HD, CRRT or PD remove AMGs?¹

Rapid Clearance of AMGs²

- In what patients is AMG clearance most rapid?
 - Children
 - Pregnancy
 - Immediately postpartum
 - Cystic fibrosis

Characteristics of AMGs

- Bactericidal²
- Concentration dependant killing²
- PAE usually 2-4 hours²
 - Gram negative > gram positive¹
- Synergy
- Properties suggested exploration of extended interval dosing

Pharmacodynamics of AMGs²

- Two predictors of efficacy
 - AUC₂₄:MIC
 - □ C_{max}:MIC
- AUC₂₄:MIC
 - Affected by V_d and Clearance
- C_{max}:MIC
 Affected by V_d

Dosing Strategies¹

- Traditional
 - Weight based dose divided 2-3 times daily in patients with normal renal function
 - The interval was extended to daily in impaired renal function
 - □ Use IBW (AdjBW if TBW $\geq 20\%$ IBW)³
- Extended Interval
 - Higher weight based dose given daily or longer if patient has poor renal function
 - □ Use AdjBW (unless TBW is \leq IBW)³

Evidence for Extended Interval Dosing²

- Data shows superiority or equivalence for:
 - Clinical efficacy
 - Bacteriologic efficacy
 - Nephrotoxicity
 - Cost-effectiveness^{1,3}
- No difference show for:
 - Auditory toxicity
 - Vestibular toxicity
 - Mortality rates

When to use Traditional Dosing?

- Burns (>20% body)⁴
- Pregnancy⁴
- Decreased renal function (<40 ml/min)⁴
- Dialysis⁴
- Ascites⁴
- Cystic Fibrosis³
- History of hearing loss³
- Gram positive infxns³
- Mycobacterial infxns³

AMG Extended Interval Dosing

- Gentamicin/Tobramycin
 - UTI 3 mg/kg
 - Most infxns 5 mg/kg
 - Life-threatening illness 7 mg/kg

Amikacin

- 15-20 mg/kg
- Last line for resistant organisms
- Memorial levels must be sent out for analysis

AMG Traditional Dosing

- Gentamicin/Tobramycin: 1-2 mg/kg/dose
- Amikacin: 5-7.5 mg/kg/dose

CrCl > 60	Q 8 hrs	
CrCl 40-60	Q 12 hrs	
CrCl 20-40	Q 24 hrs	
CrCl < 20	LD, monitor levels	

HD Dosing of Aminoglycosides³

- Gentamicin/Tobramycin Give after HD
 - Loading Dose: 2-3 mg/kg
 - Maintenance Dose:
 - Mild UTI or synergy = 1 mg/kg
 - Moderate to severe UTI = 1 1.5 mg/kg
 - Systemic GNR infection = 1.5 2 mg/kg
- Use IBW (if TBW ≥20% IBW use AdjBW)

Synergy Dosing of Aminoglycosides⁵

- When would synergy dosing be utilized?
- Dose of gentamicin = 1 mg/kg/dose Q8 hrs in patients with CrCl > 60 ml/min
- When should monitoring occur?
 Patient on gentamicin ≥ 7 days
- Goal trough ≤ 1 mg/mL

How do we Monitor Extended Interval Dosing?

- Nomograms!
- After the first dose of Amikacin, Gentamicin or Tobramycin:
 - Draw random level 6-16 hours later and determine the appropriate frequency based on the nomograms provided in the AMG Reference

Time between start of infusion and sample draw (hours)

Gentamicin/Tobramycin 5 mg/kg dose³

Monitoring Extended Interval Steady State Troughs³

Gentamicin/Tobramycin Trough Concentration	Amikacin Trough Concentration	Dosing Recommendation
< 1 mcg/mL	< 4 mcg/mL	Continue current dosing
1-3 mcg/mL	4-8 mcg/mL	Extend interval to 48 hours
> 3 mcg/mL	> 8 mcg/mL	Use traditional dosing

• For a true trough – draw level 30 min prior to next dose

Monitoring AMGs During Traditional Dosing

- Use peaks and troughs
- Peaks drawn 30 minutes after end of infusion
- Troughs drawn right before next dose

Drug	Peak (mcg/mL)	Trough (mcg/mL)
Gentamicin/Tobramycin	5-10	< 2
Amikacin	20-30	< 5

Monitoring AMGs During HD Dosing

- Draw pre-HD levels
- Re-dose based the following levels:

LEVELS	DOSES
< 1 mg/L	1 mg/kg after HD
< 1.5-2 mg/L	1-1.5 mg/kg after HD
< 2 mg/L	1.5-2 mg/kg after HD

Why do we monitor AMG levels?^{1,2}

Toxicity

- Nephrotoxicity reversible
- Ototoxicity irreversible
- Neuromuscular Blockade

Questions??

References

- 1. Drew RH. Aminoglycosides. In: UpToDate, Post TW (Ed), UpToDate, Waltham, MA. (Accessed on August 8, 2014.)
- 2. Pharmacodynamics and dosing of aminoglycosides. *Infect Dis Clin N Am* 17(2003) 503-528.
- 3. Aminoglycoside Reference. Memorial Health Care System. Accessed August 8, 2014.
- Drew RH. Dosing and administration of parenteral aminoglycosides. In: UpToDate, Post TW (Ed), UpToDate, Waltham, MA. (Accessed on August 8, 2014.)
- University of California San Francisco. Aminoglycoside Dosing and Monitoring. Accessed August 10, 2014. http://clinicalpharmacy.ucsf.edu/idmp/adult_guide/aminoglycosid e_dosing.htm.