Overview and Comparison of DKA and HHS

By: Eleni Martinez, Pharm.D. PGY1 Pharmacy Resident

Objectives

- Describe the pathogenesis and epidemiology of DKA and HHS
- Distinguish precipitating factors for DKA and HHS
- Compare and contrast the clinical presentation and diagnostic criteria for DKA and HHS
- Discuss the treatment and management of DKA and HHS
- Evaluate a treatment plan for a patient undergoing hyperglycemic crisis

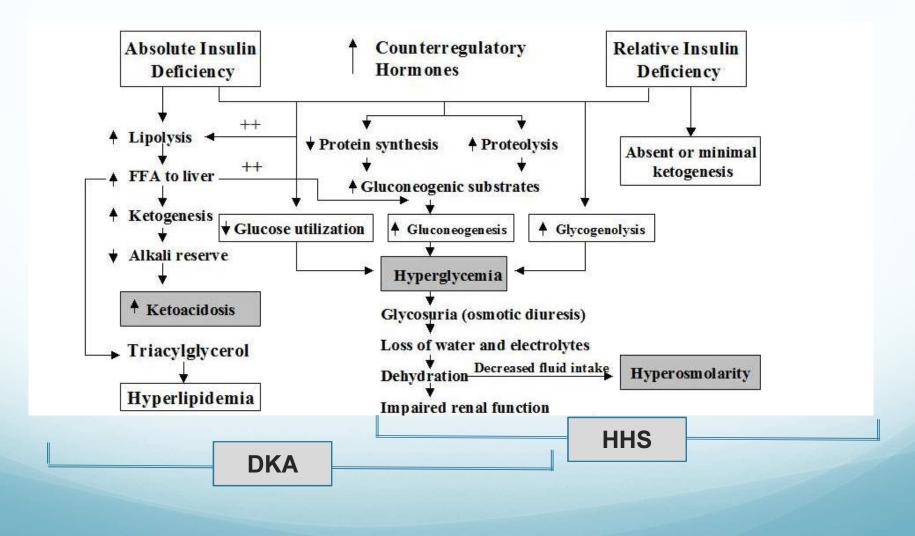
Introduction

- Diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS) are two of the most serious acute complications of diabetes
- These two metabolic disorders differ in their degree of hyperglycemia and presence or absence of ketoacidosis
- Although both are treated similarly, it is important to detect distinguishing factors so patients are managed correctly
- DKA and HHS are separate entities, however one-third of patients exhibit characteristic of both conditions

Stoner GD. Hyperosmolar Hyperglycemic State. Am Fam Physician. 2005 May 1;71(9):1723-1730.

Epidemiology

- Mortality in HHS is much higher than in DKA
 - HHS mortality is between 5-20%
 - DKA mortality is <1%
- Population affected
 - DKA most commonly occurs in type 1 diabetics
 - HHS occurs <u>exclusively</u> in type 2 diabetics
- Evolution of symptoms
 - DKA usually evolves over 24 hours
 - HHS evolves over days to weeks
- Prognosis of both is poorer in age extremes and with other comorbidities


Pathogenesis: DKA

- Insulin concentration in the body
- Counterregulatory hormone concentrations
 - Catecholamines, cortisol, and glucagon
- Hyperglycemia develops as a result of:
 - Increased gluconeogenesis
 - Accelerated glycogenolysis
 - Impaired glucose utilization
- Magnified by transient insulin resistance (type II)

Pathogenesis: HHS

- Not as well understood as DKA
- Greater degree of dehydration due to
 - Osmotic diuresis
 - Differences in insulin availability
- Endogenous insulin secretion > than in DKA
- Insulin levels are not enough to facilitate glucose utilization by insulin sensitive tissues
 - Adequate to prevent lipolysis and ketogenesis

Pathogenesis

Available at: http://diabetesmanager.pbworks.com/f/pathogenesis%20of%20dka.jpg. Accessed October 27, 2014.

Precipitating Factors: DKA & HHS

Illness

- Infection
- Pancreatitis, myocardial infarction or stroke
- Dehydration (HHS)
- Inadequate or discontinuation of insulin therapy
- New onset or unrecognized diabetes
- Drug-induced hyperglycemia

Precipitating Factors: Illness

- Infections are the most common cause
 - Pneumonia, sepsis, UTI
- Acute illnesses
 - Myocardial infarction, stroke, pancreatitis
- Increases release of counterregulatory hormones
 - Cortisol
 - Catecholamines
 - Glucagon

Precipitating Factors: Dehydration

- Release of counterregulatory hormones
 - Compromises access to water
 - May result in severe dehydration
- Restricted water intake may also be due to
 - Patient being bedridden
 - Altered response to thirst by elderly
 - Altered mental status and not responding to signs of hyperglycemia

Precipitating Factors: Insulin

- May result from inadequate insulin therapy
- Psychological problems
 - Eating disorders
- Younger patient's may discontinue due to:
 - Fear of weight gain
 - Fear of hypoglycemia
 - Forgetting to take insulin
 - Embarrassed by stigma
 - Medication cost

Precipitating Factors: Diabetes

- New onset diabetes is a very common cause
- DKA is often the presenting "symptom" of diabetes
- Patients new to diabetes cannot recognize hyperglycemic symptoms
- Some common symptoms include:
 - Polyuria, polydipsia, polyphagia and weight loss
- Elderly patients with new-onset type II diabetes are at high risk for HHS

Precipitating Factors: Drugs

- Drugs that affect carbohydrate metabolism include:
 - Corticosteroids
 - Thiazides
 - Sympathomimetic agents
 - Norepinephrine, albuterol, etc.
 - Typical and atypical antipsychotics
- May induce peripheral insulin resistance by:
 - Antagonizing receptors on pancreatic ß-cells
 - Inhibiting α2-adrenergic receptors

Clinical Presentation

	DKA	HHS
Hyperglycemia symptoms	+	+
Abdominal symptoms (pain, nausea/vomiting)	+ (>50%)	< Common
Dehydration	+	+
Fruity breath (from ketones)	+	
Kussmaul breathing	+	
Weakness	+	+
Neurological deficits	+	+ (>Coma)

Diagnostic Criteria

	DKA	HHS
Plasma glucose	> 250 mg/dL	> 600mg/dL
Ketonuria/ketonemia	Present	Small amount or absent
Arterial pH	< 7.3	≥ 7.3
Serum bicarb	≤ 18meq/L	>18
Anion gap	Elevated (>10)	Variable
Serum osmolarity	Variable	>320 mOsm/kg

Other Lab Abnormalities

Leukocytosis

- Cell counts in the 10,000-15,000 mm³ range
- Attributed to stress
- Hyponatremia
 - Osmotic flux of water from the intracellular to the extracellular space in the presence of hyperglycemia
 - Correction: Add 1.6 mg/dl to the measured Na⁺ for each 100 mg/dl of glucose above 100 mg/dl
- Hyperkalemia
 - Extracellular shift of potassium caused by insulin deficiency and acidemia

Treatment

- Goals of treatment include:
 - Correction of dehydration
 - Correction of hyperglycemia
 - Correction of electrolyte imbalances
 - Identification of comorbid conditions
- Before initiating treatment certain information must be obtained:
 - Thorough medical history
 - Baseline labs

Treatment Steps

- 1. Hydrate with isotonic saline
 - Used to expand extracelluar volume and stabilize cardiovascular status
 - Increases insulin responsiveness by lowering osmolality, reducing vasoconstriction and stress hormone levels
- 2. Correct potassium deficit
 - Administration of insulin will decrease K+ levels
 - Choice of fluid replacement may be influenced by K+ levels
- 3. Begin IV insulin infusion
 - Replace bicarbonate in certain cases (DKA only)

Nyenwe EA, Kitabchi AE. Evidence-based management of hyperglycemic emergencies in diabetes mellitus. Diabetes Res Clin Pract. 2011;94(3):340-51.

Treatment: Hydration

- 1. Initiate NS IV 1L/hr (15-20ml/kg/hr) x 1 hour
- 2. Assess hemodynamics, hydration and electrolytes
- If hemodynamically unstable:
 - Continue NS at 1L/hr and ADD vasopressors
- If hypovolemic shock:
 - Continue NS at 1L/hr
- If dehydration with low Na⁺ or normal-high Na⁺:
 - NS at 250-500ml/hr (low Na⁺)
 - 1/2 NS at 250-500ml/hr (normal-high Na⁺)

NS: Normal Saline

Treatment: Hydration

- 3. Change fluid to D5¹/₂NS and reduce rate by half
 - Once plasma glucose reaches:
 - 200mg/dL (DKA)
 - 300mg/dL (HHS)
 - Dextrose is added to fluids because insulin cannot be stopped until there is complete resolution of symptoms
 - Fluid deficit is usually corrected within 24 hours

Treatment: Potassium

- Patients often present with hyperkalemia even though total body stores of K⁺ are low
- K⁺ at presentation can be low, high, or normal
- Once glucose and acidemia correct, K⁺ will drop
- Maintenance goal for plasma K⁺ is 4 5 mEq/L
- K⁺ should be monitored carefully during therapy
 - EKG is also recommended for low or high levels of K⁺
- Before replacing K⁺ adequate renal function should be established

Nyenwe EA, Kitabchi AE. Evidence-based management of hyperglycemic emergencies in diabetes mellitus. Diabetes Res Clin Pract. 2011;94(3):340-51.

Treatment: Potassium

- Normokalemia: replacement should be given with the start of insulin therapy
 - Add 20-30 meq K⁺/L to IV fluids to keep K⁺ (4-5meq/L)
- Hypokalemia: replacement should be started immediately, before beginning insulin therapy
 - Add 40 meq K⁺/L/hour (may be added to fluid bolus)
 - K⁺ should be monitored hourly until normal level achieved
- Hyperkalemia: replacement should be initiated when K⁺ falls to normal
 - Replacement given as potassium chloride
 - Continue throughout insulin drip

Nyenwe EA, Kitabchi AE. Evidence-based management of hyperglycemic emergencies in diabetes mellitus. Diabetes Res Clin Pract. 2011;94(3):340-51.

- Mainstay of treatment of hyperglycemic crisis
 - May use any route of administration
 - IV commonly used because it works rapidly
- Give regular insulin via IV route as infusion
 - Started after initial fluid bolus is complete
 - Typically 100units/100mL concentration
 - Short half-life and easy titration
 - Requires placement in the ICU
 - Hourly glucose checks
 - Hold until $K^+ \ge 3.3 \text{meq/L}$

- Recommended insulin dose based on ADA guidelines
 - 0.1 units/kg IV bolus, then 0.1 units/kg/hour infusion
 - 0.14 units/kg/hour (using actual body weight)
 - Equivalent to 10 units/hour in a 70 kg patient
- Based on a recent randomized prospective trial, bolus is not necessary if higher maintenance dose is used
- In absence of bolus, <0.1units/kg/hour resulted in an insulin concentration too low to suppress hepatic ketone body production

Kitabchi AE, et al. Is a priming dose of insulin necessary in a low-dose insulin protocol for the treatment of diabetic ketoacidosis? Diabetes Care 2008;31.

- BG should be decreased at a rate of 50–75 mg/dL/hr
- If BG has not decreased by ≥ 10% in 1st hour, double insulin dose
- ↓ insulin infusion rate to 0.02-0.05 units/kg/ when BG:
 - $\leq 200 \text{ mg/dI} \text{ (DKA)}$
 - \leq 300 mg/dl in (HHS)
 - May also add dextrose to IV fluids
- Continue insulin until event resolves
 - Anion gap closes and acidosis resolves (DKA)
 - Mental status resolves (HHS)

BG: Blood glucose

- Transition to subcutaneous insulin
 - Event has resolved
 - Able to tolerate oral intake
- Overlap first subcutaneous insulin injection with insulin infusion to give sufficient time for absorption
 - Insulin-naïve: 0.5 0.8 unit/kg/day (Basal/Bolus)
 - Non-naïve: resume prior regimen

Nyenwe EA, Kitabchi AE. Evidence-based management of hyperglycemic emergencies in diabetes mellitus. Diabetes Res Clin Pract. 2011;94(3):340-51.

Treatment: Bicarbonate

- Bicarbonate replacement therapy is controversial
- Not indicated in HHS, only for DKA
- Only if severely acidotic (pH <6.9):
 - Add 100mEq of NaHCO₃ in 400mL sterile water with 20mEq of KCI
 - If the K⁺ is <5.3 mEq/L should administer over 2 hours
- pH and bicarbonate should be monitored every 2 hours
- Bicarbonate replacement may slow the rate of recovery of the ketosis

Kitabchi AE, et al. Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Treatment. UpToDate. 2014. Accessed November 3, 2014.

- RW is 55 year old female who presented to the hospital with hypercaphic respiratory failure, progressive weakness and altered mental status
 - Ht: 61 inches, Wt: 46.3kg
 - PMhx: hyperlipidemia, hypertension, diabetes, chronic pancreatitis, and tobacco dependency
 - U/A: (+) for protein, (-) for ketones
- TL is a 23 year old female who presented to the hospital with nausea, vomiting, dizziness, tachycardia
 - Ht: 62 inches, Wt: 64kg
 - PMhx: diabetes, HTN, eczema, and GERD
 - U/A: (+) for protein and ketones

Labs (RW)	Values	Labs (TL)	Values
Na	137	Na	129
К	4.6	К	3.5
CI	96	CI	98
CO ₂	36	CO ₂	8
Scr	1.7	Scr	0.32
Glucose	1283	Glucose	555
рН	7.17	рН	
HCO ₃	37.2	HCO ₃	
WBC	17.0	WBC	7.3
Anion gap	3.8	Anion gap	23
Osmolality	354	Osmolarity	294
Osmolality	354	Osmolarity	294

Labs (RW)	Values	Labs (TL)	Values
Na	137	Na	129
К	4.6	К	3.5
CI	96	Cl	98
CO ₂	36	CO ₂	8
Scr	1.7	Scr	0.32
Glucose	1283	Glucose	555
рН	7.17	рН	
HCO ₃	37.2	HCO ₃	
WBC	17.0	WBC	7.3
Anion gap	3.8	Anion gap	23
Osmolality	354	Osmolarity	294

- Identify the metabolic disorder
- RW presented with...

• HHS

- TL presented with...
 - DKA

- In the ED, DKA was given:
 - 1 liter NS bolus
- 1 hour later...
 - Continued NS @ 150ml/hr
 - Started on insulin drip @ 5units/hour (0.08units/kg/hour)
- 5 hours later...
 - Changed IVF to D5 ½ NS @125ml/hr
- 9 hours later...
 - Changed IVF to D5 ½ NS with 20meq KCI @150ml/hr

Labs	10/19 @2258	10/20 @0600	10/20 @0952	10/20 @1327
Na	129	141	138	140
К	3.5	2.7	4.7	4.1
CI	98	115	115	115
CO ₂	8	13	16	19
Scr	0.32	0.38	1.44	0.42
Glucose	555	180	232	188
Anion gap	23	13	7	6
Osmolarity	294	295	292	294

- What was done correctly?
 - Initial fluid bolus
 - Keeping NS since sodium was low
 - Starting insulin drip
- What changes would you have made?
 - Given higher dose of insulin infusion or insulin bolus
 - Started potassium in the fluids from the beginning
 - Drawn labs every 2 hours after admission

- 20 hours later...
 - Insulin drip was discontinued
 - Overlapped with insulin pump
- DKA was transferred to the floor for monitoring 1 more day and was discharged home the next day
- All symptoms of DKA were resolved upon discharge

Patient Case: HHS

- In the ED, HHS was given:
 - 8 units IV regular insulin (0.18units/kg/hour)
- 1 hour later...
 - Started NS @ 150ml/hr
 - Started on insulin drip @ 2units/hour (0.04units/kg/hour)
- 3 hours later...
 - Increased NS to 300ml/hr for 2L then ½ NS @250ml/hr
 - Increased insulin drip to 4 units/hour (0.09units/kg/hour)
- 6 hours later...
 - Bolused K⁺ 40meq x1

Patient Case: HHS

Labs	10/8 @0318	10/8 @0823	10/8 @1319	10/8 @1601	10/8 @1924
Na	137	153	155	153	150
К	4.6	3.0	3.7	3.7	4.9
CI	96	114	120	118	119
CO ₂	36	33	31	31	26
Scr	1.7	1.47	1.18	1.35	1.21
Glucose	1283	539	151	60	108
рН	7.17	7.27	7.49	7.32	
HCO ₃	37.2	30.5	29.4	30.2	
Anion gap	3.8	8.5	5.6	4.8	5.0
Osmolality	354	344	326	317	313

- What was done correctly?
 - Keeping NS since sodium was low
 - Starting insulin drip
- What changes would you have made?
 - Given initial fluid bolus in ED
 - Given higher dose of insulin infusion
 - Added potassium to fluids instead of giving bolus
 - Drawn labs every 2 hours after admission
 - Insulin was doubled without reason

Patient Case: HHS

- 12 hours later...
 - NS bolus 500ml x 1
- 16 hours later...
 - Changed IVF to D5 ½ NS @150ml/hr
- 3 days later...
 - Decreased IV insulin infusion sliding scale level 1
- 4 days later...
 - Transition patient to subcutaneous sliding scale insulin
- HHS had a complicated admission and was discharged 12 days later

Take Home Points

- DKA and HHS are dangerous metabolic disorders that warrant immediate medical attention
- It is essential to monitor patients and their lab values every 2 hours to ensure patient safety
- Following guidelines when managing these patients is important and can reduce complications
- Pharmacists can play a large role in the management of these patients

References

- 1. Stoner GD. Hyperosmolar Hyperglycemic State. *Am Fam Physician.* 2005 May 1;71(9):1723-1730.
- 2. Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN. Hyperglycemic crises in adult patients with diabetes. Diabetes Care. 2009;32(7):1335-43.
- 3. Kitabchi AE, Murphy MB, Spencer J, Matteri R, Karas J. Is a priming dose of insulin necessary in a low-dose insulin protocol for the treatment of diabetic ketoacidosis? Diabetes Care 2008;31:2081–2085
- 4. Available at: http://diabetesmanager.pbworks.com/f/pathogenesis%20of%20dka.jpg. Accessed October 27, 2014.
- 5. Nyenwe EA, Kitabchi AE. Evidence-based management of hyperglycemic emergencies in diabetes mellitus. Diabetes Res Clin Pract. 2011;94(3):340-51.
- 6. Kitabchi AE, et al. Diabetic ketoacidosis and hyperosmolar hyperglycemic state in adults: Treatment. UpToDate. 2014. Available at: http://www.uptodate.com/contents/diabetic-ketoacidosis-and-hyperosmolar-hyperglycemic-state-in-adults-treatment?source=search_result&search=hhs+adult&selectedTitle=1%7E120. Accessed November 3, 2014.

