Anticoagulation in Thrombophilias

Presented by: Eleni Martinez, Pharm.D.
PGY1 Pharmacy Resident
October 2, 2014

Objectives

- Define hypercoagulability and list common types of related disorders
- List the pathophysiology, prevalence and genetics of hypercoagulable states
- Discuss the diagnosis and testing of various hypercoagulable states
- Review the current recommendations for anticoagulation in hypercoagulable states

Introduction

- Procoagulant and anticoagulant factors in the blood are normally in balance
- Hypercoagulability
 - Increased risk of developing clots in arteries or veins
- Genetic
 - Individual is born with certain factors that increases risk
- Acquired
 - Result of surgery, trauma or a medical condition
- May also be referred to as thrombophilia

Assessment

- Personal and family medical history is essential
- May qualify for screening if:
 - Family history of abnormal blood clotting
 - Abnormal blood clotting at a young age (<50 years of age)
 - Thrombosis in unusual locations, such as veins in the arms, liver, intestines, kidney, or brain
 - Idiopathic blood clots
 - Blood clots that recur
 - Stroke at a young age

Hypercoagulable States

- Genetic
 - Factor V Leiden
 - Protein C and Protein S deficiency
 - Prothrombin gene mutation
- Acquired
 - Antiphospholipid syndrome

Background Information

Antithrombin

Fibrin (la)

Cross-linked

fibrin clot

XIIIa

Common

pathway

XIII

Thrombin (IIa)

Fibrinogen (I)

Xa

Va

Prothrombin (II)

Active Protein C

Protein C + Thrombomodulin

Protein S

Factor V Leiden

Most common inherited form of thrombophilia

Mutation in the F5 gene

Slows the rate at which APC can inactivate factor V

Activated factor V remains in circulation longer

Conversion of prothrombin to thrombin

Background Information

Antithrombin

Fibrin (la)

Cross-linked

fibrin clot

XIIIa

Common

pathway

XIII

Thrombin (IIa)

Fibrinogen (I)

Xa

Va

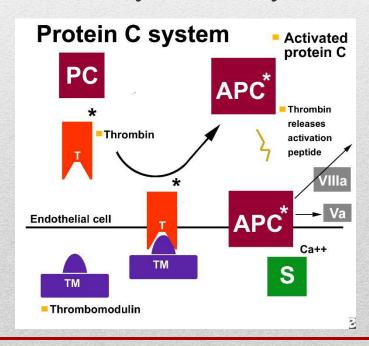
Prothrombin (II)

Active Protein C

Protein C + Thrombomodulin

Protein S

Factor V Leiden


- Clot risk depends on how many copies of the mutation have been inherited
- Heterozygous vs Homozygous
 - Heterozygous inherit one copy
 - Risk is 3-8 in 1,000
 - Most common type
 - 95 percent of cases of hereditary APC resistance
 - Homozygous inherit two copies (one from each parent)
 - Risk increases to 80 in 1,000
 - Rare
 - 1 percent of patients with the factor V Leiden mutation

Factor V Leiden

- Diagnosis
- APC resistance assay
 - Precursor to DNA analysis
 - Shows minimal increase in activated partial thromboplastin time (aPTT) when APC is added to patient's plasma
- DNA analysis
 - Confirms the actual amino acid substitution on the F5 gene

- Deficiencies in protein C & S disrupts the balance between procoagulant and anticoagulant proteins
- Protein C is found on the long arm of chromosome 2
- Protein S is a vitamin K-dependent glycoprotein
 - Cofactor of the protein C system
- APC inactivates factor Va and factor VIIIa at an increased rate in the presence of protein S

- APC inactivates coagulation factors Va and VIIIa
 - Required for thrombin generation
- Protein S enhances the catalytic activity of APC

- Heterozygous
 - Autosomal dominant
 - Activity levels of protein C are about half of a normal patient
- Type I deficiency (quantitative)
 - Concentration of plasma protein C is decreased
 - Varies from severe thrombotic tendencies to asymptomatic
- Type II deficiency (functional)
 - Less common than type I
 - Decreased activity with normal levels of protein C

- Screening
 - Decreased activity of protein C
 - True hereditary deficiency is defined as <50% activity level
 - Heterozygous deficiency or low end of the normal distribution
 - 65%-55% activity level
 - Functional protein C assay
 - Reflexive immunologic assay

- Functional assays
 - Uses the venom of the southern copperhead snake
 - Activates the protein C zymogen to APC
 - APC activity can be measured by clotting assay
- Immunologic assays
 - Enzyme-linked immunosorbent assays (ELISA's)
 - Radioimmunoassays (RIA's)
 - Electroimmunoassays

- Prothrombin is the precursor of thrombin
- It is a vitamin K-dependent protein
 - Synthesized in the liver
- The mutation occurs at the G20210A nucleotide
 - Efficiency of mRNA processing is altered
 - Disruption in the decay rate of prothrombin mRNA

- Genetics
- Heterozygous carriers
 - 30 percent higher plasma prothrombin levels than normal
- Homozygous carriers
 - Substantially higher than that in heterozygotes
- Most common in Caucasian population
- Many symptomatic patients will also have factor V Leiden

- Pooled analysis of 8 case-control studies
- Odds ratio of developing VTE
 - Prothrombin gene mutation heterozygotes 3.8
 - Factor V Leiden heterozygotes 4.9
 - Both mutations (double heterozygotes) 20.0

- Diagnosis
- Polymerase chain reaction (PCR)
 - Detect the G20210A prothrombin gene mutation in DNA
- Multiplex PCR amplification
 - Used to detect both prothrombin mutation and Factor V Leiden
 - Region of both genes using whole blood as the DNA source

Treatment

- Treatment is recommended if acute VTE develops
- Anticoagulant medications include
 - Warfarin
 - Unfractionated heparin
 - Low-molecular weight heparin
 - Fondaparinux
 - Dabigatran
- Prophylaxis should be used after surgery or extended hospital stay

Antiphospholipid Syndrome

- Autoimmune disorder
- Characterized by an increased tendency to form clots
 - Clots can develop in any vessel in the body
 - Most commonly occurs in lower limbs
- Other signs and symptoms
 - Thrombocytopenia
 - Anemia due to hemolysis
 - Livedo reticularis

Antiphospholipid Syndrome

- APS in pregnancy
 - 10-15% of women with miscarriages have this condition
 - Complications
 - Preeclampsia
 - Placental insufficiency
 - Early delivery or miscarriage
- Catastrophic antiphospholipid syndrome (CAPS)
 - Multiple clots in various blood vessels throughout the body
 - Blocks blood flow and causes organ failure

- Antibodies against phospholipids in the lining of cells
 - Bind to proteins and causes them to bind to other molecules
 - Binding to molecules activates clotting pathway
- Diagnosis
 - Presence of ≥1 type of antiphospholipid antibody (aPL) on 2 different times at least 12 weeks apart
- Associated with the presence of autoimmune diseases
 - Occurs most commonly in people with SLE
 - 10-15% of people with SLE have antiphospholipid syndrome

- Three major aPLs
 - Anticardiolipin antibodies (aCL)
 - Antibodies to beta-2-glycoprotein-I (beta-2-GP-I)
 - Lupus anticoagulant (LA)
- Beta-2-GP-I is the main antigenic target of aPL
- aPLs are autoantibodies

- Odds ratio of developing VTE or arterial thromboembolism
 - Lupus anticoagulant 11
 - Medium or high levels of aCL 1.6
- Risk is even higher with positivity to 3 aPL activities
 - LA, aCL, and beta-2-glycoprotein-I

- Lupus Anticoagulant (LA) causes prolongation in:
 - Activated partial thromboplastin time (aPTT)
 - Dilute Russell viper venom time (dRVVT)
 - Kaolin clotting time
 - Prothrombin time
- Prolongation is not reversed when the patient's plasma is diluted 1:1 with normal platelet-free plasma

- aPL bound to phospholipids may be detected by:
 - Lupus anticoagulant tests
 - Anticardiolipin antibody ELISA
 - Anti-beta-2 glycoprotein-I ELISA
- Other tests include:
 - Partial thromboplasin time (PTT)
 - Russell viper venom time
 - Thromboplastin inhibition test

APS Treatment

- Asymptomatic patients with positive blood tests do not require treatment
- Prophylaxis
 - Avoid oral contraceptives and smoking
 - Prophylactic anticoagulation for surgery or hospital stay
 - Statins for patients with hyperlipidemia
 - Hydroxychloroquine for SLE patients
 - Stay active during long periods of inactivity

APS Treatment

- Full anticoagulation warranted if patient presents with a clot
 - IV or subcutaneous heparin followed by warfarin
- INR targets
 - 2.0-3.0 for venous thrombosis
 - 3.0 for arterial thrombosis
 - 3.0-4.0 for patients with recurrent thrombosis while therapeutic
- Treatment is generally lifelong

APS Treatment

- Other options
 - Combination of warfarin and aspirin for refractory cases
 - New oral anticoagulants have not been studied
 - RAPS (Rivaroxaban in antiphospholipid syndrome) trial currently ongoing
 - May be considered if patient is allergic/intolerant to warfarin
 - Rituximab for recurrent thrombosis with therapeutic INR
 - May be effective for other clinical manifestations

APS Treatment: Pregnancy

- Treatment during pregnancy
 - History of pregnancy loss
 - Prophylactic subcutaneous heparin and low-dose aspirin
 - Therapy is withheld at the time of delivery
 - Restarted after delivery for 6-12 weeks postpartum
 - History of thrombosis
 - Therapeutic doses of heparin
 - Prenatal and post-partum
 - Prophylactic dose for no history of thrombosis
 - Long term full anticoagulation for history of thrombosis

Take Home Points

- There are various types of genetic and acquired disorders that may put a person at a higher risk for developing clots
- Anticoagulant therapy is not warranted in genetic thrombophilias unless there is an active clot or high risk for one (ie surgery, etc)
- Antiphospholipid syndrome has specific INR requirements depending on clinical situation

References

- 1. Hypercoagulable States. 2014. Available at: http://my.clevelandclinic.org/services/heart/disorders/hypercoagstate. Accessed September 21, 2014.
- 2. Wikipedia, the free encyclopedia. Coagulation Full. Available at: http://en.wikipedia.org/wiki/Thrombin#mediaviewer/File:Coagulation_full.svg. Accessed September 21, 2014.
- 3. Factor V Leiden Thrombophilia. 2014. Available at: http://ghr.nlm.nih.gov/condition/factor-v-leiden-thrombophilia. Accessed September 22, 2014.
- 4. Grody WW, Griffin JH, Taylor AK et al. American College of Medical Genetics consensus statement on factor V Leiden mutation testing. *Genet Med.* 2001;3(2): 139-48.
- 5. Culer A, et al. Protein C Deficiency. Medscape. 2013. Available at: http://emedicine.medscape.com/article/205470-overview#a0104. Accessed September 22, 2014.

References

- 6. Bauer KA, et al. Prothrombin gene mutation: Thrombotic risk and diagnosis. UpToDate. 2014. Available at: http://www.uptodate.com.ezproxylocal.library.nova.edu/contents/prothrombingene-mutation-thrombotic-risk-and-diagnosis?. Accessed September 29, 2014.
- 7. Antiphospholipid Syndrome. 2013. Available at: http://ghr.nlm.nih.gov/condition/antiphospholipid-syndrome. Accessed October 1, 2014.
- 8. Harris ED, Budd RC, Genovese MC, Firestein GS, Sargent JS, Sledge CB. *Kelley's Textbook of Rheumatology*. 7th ed. St. Louis, Mo: WB Saunders; 2005.
- 9. Bermas BL, et al. Clinical manifestations of the antiphospholipid syndrome. UpToDate. 2013. Available at: http://www.uptodate.com.ezproxylocal.library.nova.edu/contents/clinical-manifestations-of-the-antiphospholipid-syndrome. Accessed September 29, 2014.
- 10. Movva S, et al. Antiphospholipid Syndrome Treatment and Management. Medscape. 2014. Available at: http://emedicine.medscape.com/article/333221-treatment. Accessed October 1, 2014.

Questions

Anticoagulation in Thrombophilias

Presented by: Eleni Martinez, Pharm.D.
PGY1 Pharmacy Resident
October 2, 2014