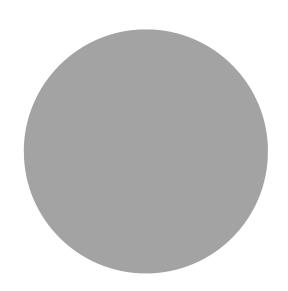
Review of U-500 Insulin


SHITAL PATEL, PHARM.D. CHI MEMORIAL 6/24/2015

Learning Objectives

- ▶ Identify patients who could benefit from U-500 insulin therapy.
- ▶ Differentiate the pharmacokinetics of U-500 insulin from that of other standard insulin therapies.
- ► Formulate a dose regimen for individuals who are converted to U-500 insulin.
- ▶ List safety concerns regarding use of U-500 insulin and propose solutions.
- Explain how to effectively counsel patients prescribed U-500 insulin.

Scope of the Problem

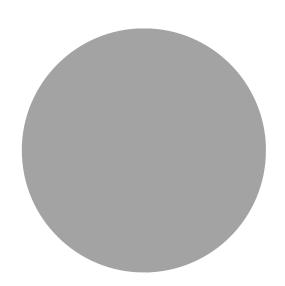
- ▶ Incidence of diabetes increased 16.5% from 2004-2007
- ▶ National obesity epidemic closely related
- ► Insulin requirements have likewise increased

Severe Insulin Resistance

- ► Requiring >200 units of insulin or > 2 units/kg daily
- ► Major therapeutic challenge in terms of achieving glycemic control

Causes of Severe Insulin Resistance

- Obesity
- Stressful Conditions
 - ▶ Pregnancy
 - ▶ Infection
 - ▶ Steroid Use
- Genetic Defects
- Insulin receptor antibodies


- ▶ Endocrine disorders
 - ▶ Polycystic ovarian syndrome
 - ▶ Hemochromatosis
 - Cushing syndrome
 - ▶ Werner syndrome
 - ▶ Acanthosis nigricans
 - ► HAIR-AN syndrome
 - ▶ Lipodystrophy

Glycemic Targets

	ADA	ACE
Hemoglobic A1C	< 7%	≤ 6.5%
Pre-prandial BG	70-130 mg/dL	< 110 mg/dL
Post-prandial BG	<180 mg/dL	< 140 mg/dL

Benefits of Glycemic Control

- ▶ Prevent microvascular complications
 - ▶ Retinopathy
 - ▶ Nephropathy
 - ▶ Neuropathy
- Prevent macrovascular complications
 - ► Coronary heart disease
 - ▶ Stroke
 - ► Peripheral vascular disease

The Problem

- Unable to achieve glycemic control despite high doses of standard insulin therapy
- Volume of insulin is difficult and uncomfortable to administer
- ► Exhibits variable absorption

Standard Insulin Products

Insulin Type	Description	Onset	Peak	Duration
Lispro	Rapid-acting	15-30 min	0.5-2.5 hrs	3-6.5 hrs
Aspart	Rapid-acting	10-20 min	1-3 hrs	3-5 hrs
Glulisine	Rapid-acting	10-15 min	1-1.5 hrs	3-5 hrs
Regular	Short-acting	30-60 min	1-5 hrs	6-10 hrs
NPH	Intermediate-acting	60-120 min	6-14 hrs	16-24 hrs
Glargine	Long-acting	1.1 hrs	4-6 hrs	8-20 hrs
Detemir	Long-acting	0.8-2 hrs		12-24 hrs

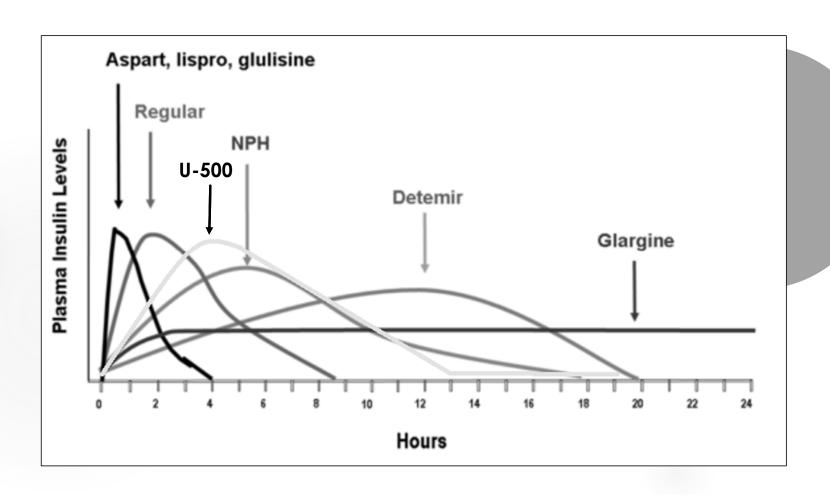
U-500

- ▶ U-500 was first introduced in 1952 by Eli Lilly
- Concentrated insulin
- ► Formulation is regular human insulin
- ► Clear solution contains 500 units/mL (20 ml vial)

U-500

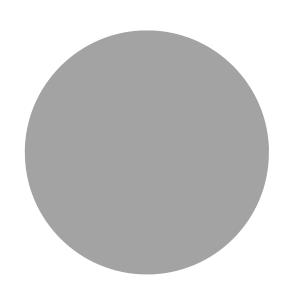
- ▶ Prescribing of U-500 increased 137% from 2007 to 2009
- ▶ No universal guidelines exist regarding clinical use
- Product unfamiliarity Inappropriate prescribing & serious medication errors

Potential Candidates for U-500


- ► Insulin requirements > 200 units or 2 units/kg/day
- ► Poor glycemic control (A1C > 8.5%)
- Compliance with insulin regimen and blood glucose monitoring
- ▶ Willing to follow-up frequently during dose titration
- ▶ Able to clearly see markings on syringe
- No hypoglycemia or hypoglycemic unawareness at current insulin dose

Pharmacokinetics of U-500 Insulin

	Non-obese subjects	Obese subjects
Onset of action	0.5 hours	0.75 hrs
Peak effect	3.5-4.5 hours	7-8.5 hours
Duration of action	6 to > 10 hours	11.5 hrs


- Onset of action similar to regular insulin with delayed peak effect
- ▶ Duration of action similar to NPH insulin

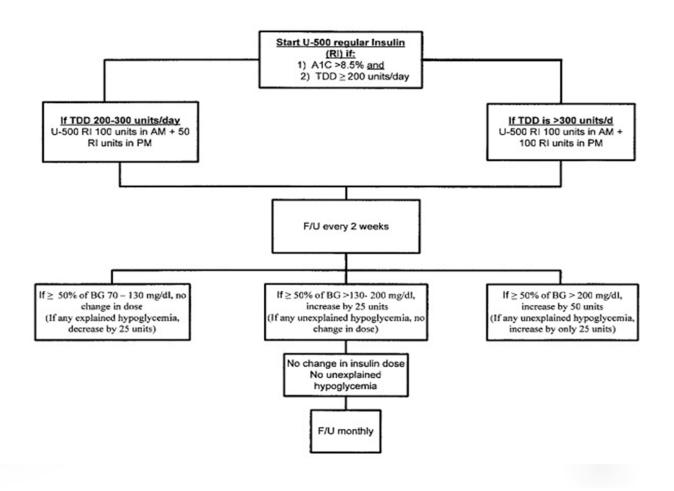
Pharmacokinetics of U-500 Insulin

Pharmacokinetics of U-500 Insulin

- ▶ U-500 insulin has a unique pharmacokinetic profile
- ▶ Onset of action: 30-60 mins
- ▶ Duration of action variable: 6-12 hours
- Administer 30 mins before meals
- ▶ Dose at least BID
- Correction doses not recommended

Dose Conversion to U-500 Insulin

- ► No guidelines or randomized trials
- ► Clinicians must devise dosing strategies
- Different methods proposed in primary literature based on experience


Dosing U-500 Insulin

< 200 200-300 300-750 750-2000 > 2000 units/day units/day units/day units/day units/day • U-500 Insulin • U-500 Insulin • U-100 Insulin • U-500 Insulin • U-500 insulin BID TID QID pump • pre-breakfast, • pre-breakfast, • pre-breakfast, pre-lunch, pre-dinner pre-lunch, pre-dinner pre-dinner, bedtime

Dosing Strategy 1

- ▶ 1. Add up total daily dose (TDD) of U-100 insulin from all insulin sources
- ▶ 2. Subtract 10-20% from total daily insulin dose = new total daily dose U-500 in units
- ▶ 3. Divide by 500 to get number of mL U-500 required for daily dose
- ▶ 4. Dived totally daily volume in 2-4 doses

Dosing Strategy 2

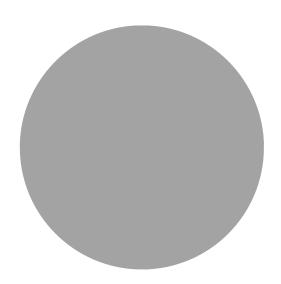
Dosing Strategy 3

- ► Empirically ↓ dose 10-20% for HbA1C ≤ 8%
- ► Empircally ↑ dose 10-20% for HbA1C ≥ 10%

Required TDD (units)	Frequency	U-500 Insulin Dosage (%)
150-300	BID TID CSII*	50/50 or 60/40 33/33/33 50/50 = 3 mealtime (50%) + 24 hr basal insulin infusion (50%)
300-600	TID QID CSII*	33/33/33 30/30/30/10 50/50 = 3 mealtime (50%) + 24 hr basal insulin infusion (50%)
>600	QID	30/30/30/10

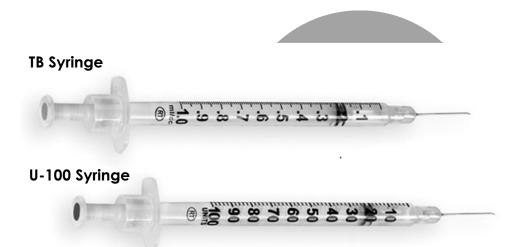
Dose Titration

- ► Similar concept to dose titration of U-100 insulin
 - ▶ Pre-lunch and pre-dinner blood glucose determines morning dose
 - ▶ Bedtime blood glucose determines dinner time dose
- ▶ Increase dose titration increments as total daily dose increased
 - ▶ TDD 200-299 Adjust by 5-10 units per dose
 - ▶ TDD 300-599 Adjust by 25-50 units per dose
 - ► TDD ≥ 600 Adjust by 50 units per dose

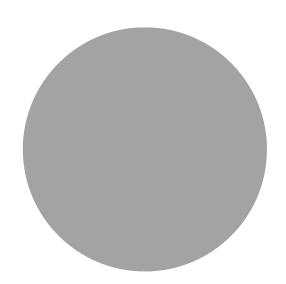

Example Dose Calculation

55 y/o M with Type 2 DM is currently on 125 units of NPH three times a day. $HbA_{1C} = 8.7\%$

- ▶ Step 1: Calculate TDD
 - ▶ 125 + 125 + 125 = 375 units of insulin daily
- ▶ Step 2: Apply 20% dose reduction
 - \rightarrow 375 (0.2 x 375) = 300 units
- ▶ Step 3: Calculated total daily volume
 - ➤ 300 units x 1ml/500 units = 0.6 mL daily
- ▶ Step 4: Determine dosing frequency
 - ▶ 100 units (0.2 mL) TID before meals


Clinical Safety

- ► Two main safety concerns
 - ▶ Weight gain
 - ▶ Hypoglycemia
- Preventative measures
 - ▶ Glucose tabs, glucagon kit
 - ► Comprehensive patient education
 - Systems to reduce medication errors


Medication Errors Reported

- ▶ U-100 used instead of U-500
 - ► Stock them separately
- ▶ U-100 syringe used
 - ► Use tuberculin syringes only
- ▶ Prescriptions/orders unclear
 - ► Indicate dose by volume and units
 - ▶ Take time to clarify dose on prescriptions/orders

Patient Counseling Points

- ► 5x concentrated insulin requires lower volumes
- ► Small changes in dose = bigger shifts in blood glucose
- ▶ Clear, colorless
- Storage requirements
- Correct syringe and dose measurement
- Administration location and technique
- Onset, peak, and duration of action
- ► Signs, symptoms of hypoglycemia
- Sick day therapy
- Syringe disposal
- No adjustments without clinical recommendations

Pharmacy's Final Checklist

- ✓ Verify U-500 insulin and appropriateness of dose (volume and units)
- ✓ Discontinue other basal and bolus insulin
- ✓ Label dose with volume, units, and as "high alert medication"
 - ✓ Double check
 - ✓ Do not load
 - ✓ Hand deliver
- ✓ Dispense in tuberculin syringe
- ✓ Comprehensive patient education for new starts
- ✓ Ensure follow-up scheduled

Assessment Question 1

- ► What minimum daily dose of insulin qualifies a patient as a potential candidate for U-500 Insulin?
- A. 20 units daily
- B. 200 units daily
- c. 400 units daily
- D. 1000 units daily

Assessment Question 2

- ▶ Which best describes the pharmacokinetics of U-500 insulin?
- A. Long-acting basal insulin
- B. Short-acting bolus insulin
- c. Rapid-acting bolus insulin
- D. Exhibits both basal and bolus pharmacokinetics

Assessment Question 3

- ▶ Based on pharmacokinetics, how often should U-500 insulin be dosed?
- A. Once daily
- B. 2-4 times daily
- c. At least 4 times daily
- D. Every 4 hours around the clock

References

- ▶ Binder C, Lauritzen T, Faber O, Pramming S. Insulin pharmaco-kinetics. Diabetes Care. 1984;7(2): 188–199.
- ► Galloway JA, et al. Factors influencing the absorption, serum insulin concentration, and blood glucose responses after injections of regular insulin and various insulin mixtures. Diabetes Care. 1981;4(3): 366–376.
- ► Khan M, et al. The pharmacokinetic and pharmacodynamic properties of regular U-500 insulin in healthy non-obese subjects. (Abstract) Diabetes. 2007;569(suppl): P-1294.
- ► Khan M, et al. The pharmacokinetics and pharmacodynamic properties of regular U-500 insulin in healthy obese subjects (Abstract) Diabetes. 2009;58(suppl): PO-2333
- ▶ Lane WS, et al. High-dose insulin therapy: is it time for U-500 insulin? Endocr Pract. 2009;15(1): 71–79.
- ▶ Segal AR, et al. Use of concentrated insulin human regular(U-500) for patients with diabetes. Am H Health-Syst Pharm. 2010; 67(18): 1526-35.