

Antibiotic Dosing in Special Populations

October 9, 2019

Background

- Antibiotics are commonly prescribed in the ICU
- Challenges to finding a dose that's just right
- Particular challenges
 - Critical illness
 - Obesity
 - Continuous Renal Replacement Therapy (CRRT)

Antimicrobial PK-PD and Efficacy

3 primary PK-PD predictors of efficacy:

Time>MIC Cmax:MIC AUC:MIC

B-lactam Pharmacodynamics

- Goal of therapy: To optimize ß-lactam exposure (time above MIC) for optimal bactericidal activity
- Required unbound % T>MIC for cidal kill:
 - **60-70%** of dosing interval cephalosporins
 - **50%** of dosing interval penicillins
 - 40% of dosing interval carbapenems

Plasma concentrations are usually surrogates

"Adequate" concentrations in the serum

"Adequate" concentrations at the site of infection

Where have our antibiotic doses come from?

Pertinent Antibiotic Characteristics

	Hydrophilic Antibiotics	Lipophilic Antibiotics
Pharmacokinetic Characteristics	 Lower volume of distribution Predominantly renally cleared Low intracellular penetration 	 Higher volume of distribution Predominantly hepatically cleated Good intracellular penetration
Examples	Beta-lactamsAminoglycosidesGlycopeptidesLinezolidColistin	FluoroquinolonesMacrolidesLincosamidesTigecycline

Critically III Patients

- Impaired absorption
 - Decreased peak and AUC
- Capillary leak
 - Increased Vd
 - Decreased plasma concentrations
 - Delayed distribution (stasis of fluid in tissues)

Critically III Patients

- Impaired absorption
 - Decreased peak and AUC
- Capillary leak
 - Increased Vd
 - Decreased plasma concentrations
 - Delayed distribution (stasis of fluid in tissues)
- End-organ damage
 - Decreased clearance
 - Increased AUC
- Hypoalbuminemia
 - Increased free fraction, variable effects
- Augmented clearance decreased AUC

Augmented Renal Clearance

- Variable definitions exist
 - GFR > 160 mL/min/1.73m2 in men
 - GFR >150 mL/min/1.73m2 in women
- Caused by a variety of factors in multiple states
 - Ex: sepsis, trauma

Critically III Populations and PK Changes

Population	Physiological Changes	Pharmacokinetic Effects
Sepsis	Capillary leakage, augmented renal clearance, hypoalbuminemia	Increased Vd Increased Clearance
Burn	Capillary leakage, augmented renal clearance, hypoalbuminemia	Increased Vd Increased Clearance
Trauma	Augmented renal Clearance	Increased Clearance
MODS	Capillary leakage, hypoalbuminemia, hypoperfusion, end-organ failure	Increased Vd Decreased Clearance

Critically III Populations (Summary)

Issue	Possible solutions
Increased Vd	Loading doses
Augmented renal function	Use high doses Direct CrCl measurement
Decreased protein binding	TDM?
Organ failure	Adjust dose

12

How often do we get the dose wrong?

- DALI study: prospective, multi-center, pharmacokinetic, pointprevalence study
 - Mid-point and trough concentrations drawn and interpreted in relation to the MIC of the infecting organism

Antibiotic (No. of Patients)						
Dosing and PK/PD Data	Cefazolin (n = 14)	Cefepime (n = 14)	Ceftriaxone (n = 33)	Doripenem (n = 13)	Piperacillin (n = 109)	Meropenem (n = 89)
Dosage per 24h, g	3.0 (3-4)	6.0 (5-6)	2.0 (2-4)	1.75 (1.5-3)	12.0 (12-16)	3.0 (3-4)
$50\% f_T$ >MIC achieved	100%	78.6%	97%	100%	80.6%	95%
$100\% f_T$ >MIC achieved	78.6%	78.6%	93.9%	76.9%	67%	69.7%

	Achieved 50% fT>MIC	Did not achieve
Overall population	84%	16%*
Prolonged infusion (33%)	93%	7%
Intermittent infusion (67%)	80%	20%

*Associated with clinical failure OR 0.68 (95% CI 0.52-0.91)

Obesity and Antibiotics

- Increased antibiotic failures compared to general population
- Obese population underrepresented in both PK and efficacy studies
- PK changes in obesity
 - Absorption not significantly modified
 - Distribution
 - Max blood flow rate into fat <5% of cardiac output so hydrophilic drugs should not be greatly influenced
 - Volume of distribution increases
 - Metabolism changes not well defined
 - Elimination higher glomerular planar surface area (difficult to estimate)

PK Effects of Obesity in Infected III Patients

Antibiotic dosing in obesity

- Meng et al., Pharmacotherapy 2017;37(11):1415-31
- 3 most commonly utilized beta-lactams
 - Piperacillin/tazobactam
 - 4.5g IV q8h (extended) BMI≥30
 - Cefepime
 - Data is lacking but consider 2g
 q8h in critically ill + BMI ≥30
 - Meropenem
 - Obesity did not hinder achievement of PD targets
 - Consider on case by case basis

Fig. 2. Probability of target attainment at ≥50% fT> MIC for piperacillin/tazobactam, based on piperacillin serum concentrations, administered by prolonged infusion in obese patients. fT> MIC, time that unbound (or free) drug concentration remains above the minimum inhibitory concentration of a bacterial pathogen; q8h, every 8 h.

Zosyn loading dose rationale

Piperacillin/Tazobactam (Zosyn®)	Loading Dose	BMI <30	BMI ≥30
CrCl > 20 ml/min or CRRT	4.5 gm IV x 1 dose (30min	3.375 gm IV q 8 hrs (4 hour infusion)	4.5 gm IV q 8 hrs (4 hour infusion)
CrCl ≤ 20 or HD or peritoneal dialysis	infusion), followed by BMI based dosing strategy	3.375 gm IV q 12 hrs (4 hour infusion)	

Cefepime (Maxipime®)				
Febrile Neutropenia, Treatment of recent or confirmed infection with a GNR with an MIC of 8, critically ill with BMI ≥ 30		UTI, no sepsis	All other indications	
> 50	2 gm Q 8 hrs	1 gm Q 12 hrs	1 gm Q 6 hrs	
30-49 or CRRT	2 gm Q 12 hrs	1 gm Q 8 hrs		
11-29	2 gm Q 24 hrs	1 gm Q 24 hrs	1 gm Q 12 hrs	
≤ 10 or HD		1 gm Q PM (give after dialysis)		

CRRT Modalities

Technique	Convection	Diffusion
Continuous venovenous hemofiltration (CVVH)	++++	-
Continuous venovenous hemodialysis (CVVHD)	+	++++
Continuous venovenous hemodiafiltration (CVVHDF)	+++	+++

Drug Properties

- Increase in Vd
 - Larger loading dose needed
 - Decreased efficacy of CRRT removal
- Protein binding
 - Only unbound fraction of drug removed by CRRT
- In general, drugs with high Vds (>1L/kg) and high protein binding (>80%) are poorly eliminated by CRRT

Beta-lactam Concentrations in CRRT

- Doses of antibiotics based on renal function \rightarrow proportion of inadequate serum concentrations ~10%
- Trade-off → 53% had very high levels, ? Toxicity concerns

CRRT Dosing Recommendations

- Assume ultrafiltration and dialysate flow rates of 1-2L/hr and minimal residual renal function
- Dosing recommendations in the literature particularly for CVVHD
 & CVVHDF are too low
- Consider loading doses

Drug	Loading	Maintenance Dosage for CRRT			High Dose*
Drug	Dose	CVVH	CVVHD	CVVHDF	mgn bosc
Ampicillin	2g	1-2g q8-12h	1-2g q8h	1-2g q6-8h	2g q4-6h
Ampicillin/sulbactam	3g	1.5-3g q8-12h	1.5-3g q8h	1.5-3g q6-8h	3g q6h
Aztreonam	2g	1-2g q12h	1g q8h or 2g q12h	1g q8h or 2g q12h	2g q8h
Cefazolin	2g	1-2g q12h	1g q8h or 2g q12h	1g q8h or 2g q12h	2g q8h
Cefepime	2g	1-2g q12h	1g q8h or 2g q12h	1g q8h or 2g q12h	1g q6h or 2g q8h
Ceftaroline	600mg		400-600mg q12h		600mg q8h
Ceftazidime/avibactam	2.5g	1.25g IVq8h			2.5g q8h (based on ceftazidime data)
Ceftolozane/tazobactam	3g	750mg q8h	1.5g q8h	1.5g q8h	1.5g q8h (data lacking for higher dose)
Ciprofloxacin	N/A	400mg q12- 24h	400mg q12- 24h	400mg q12h	400mg q8-12h
Levofloxacin	N/A	750mg q48h	750mg q48h	750mg q24h	750mg q24h
Meropenem	1g	500mg-1g q12h	500mg-1g q8- 12h	500mg-1g q8- 12h	500mg q6h/1g q8h
Meropenem/vaborbactam	4g	1-2g q8h (extendec)			2g q8h (extended); based on meropenem data
Piperacillin/tazobactam	4.5g	3.375-4.5g IV q8h (extended)			

^{*}Parameters:

Ultrafiltration/dialysate flow rate of >2L/hr

Residual renal function

Optimal Dosing in CRRT – A Moving Target

Changes in mode

Frequent filter changes or clogged filters

Alteration of flow rates

Off/On with access issues

